何祖华团队解析作物籽粒灌浆和磷利用的分子机制

2021年4月29日,国际著名学术期刊Nature Genetics在线发表了植物分子遗传国家重点实验室何祖华研究组与上海科技大学生命科学学院、加州大学伯克利分校合作完成的题为“A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals”的研究论文,在作物籽粒灌浆、磷素利用和抗病性调控领域取得重大突破。该研究是何祖华研究组继2008年报道灌浆基因GIF1 (Wang et al., 2008)之后的又一项籽粒灌浆相关的重要研究工作。文章揭示了磷转运蛋白调控籽粒灌浆和磷的再分配过程的重要机制。近些年来,产量和肥料利用率一直是农业生产和育种的主要改良目标。在该项研究中,研究团队首次鉴定了一个pHO1型pi外运蛋白OspHO1;2,该转运体可以同时提高作物籽粒灌浆及磷利用率(pUE),为培育低磷条件下高产作物提供了一个重要的目标基因。

籽粒灌浆过程是水稻、玉米等禾本科作物产量的重要限速步骤,是指受精卵获得碳水化合物和其他营养物质来合成淀粉,充实籽粒的过程(Wang et al., 2015),籽粒灌浆的好坏直接影响作物产量和品质。该研究从自然变异的水稻种质资源中通过图位克隆的方式发掘到了第二个调控籽粒灌浆的关键基因OspHO1;2,该基因编码pHO1类型的磷转运蛋白。该基因的突变体Ospho1;2表现出典型的籽粒灌浆缺陷表型,与gif1突变类似。但不同的是OspHO1;2负调控植物抗病性,而GIF1正调控植株抗病性(Sun et al., 2014),因此两者在基础代谢上的调控机理是不一样的。

已有研究表明,OspHO1;2能够介导苗期根-茎组织之间的磷转运,然而没有任何直接证据表明pHO1型蛋白是磷转运蛋白。该研究运用膜片钳系统首次证明OspHO1;2具有磷转运活性,发现该蛋白同时具有内流活性(influx)和外排活性(efflux),且以外排活性为主。核磁共振波谱分析表明OspHO1;2不参与细胞内胞质和液泡之间的无机磷(pi)移动。在灌浆过程中,Ospho1;2突变体籽粒尤其是胚乳细胞中的pi含量显著累积,而总磷含量却降低。说明OspHO1;2作为一个外运蛋白能够将将pi从胚乳细胞中释放出来,其突变导致pi在种子中过量累积,同时破坏了籽粒中母体组织和子体组织间pi的交换,干扰了有机磷的合成过程。

籽粒灌浆过程中pi的稳态至关重要,pi直接参与淀粉的合成,合成淀粉所需的G-1-p/G-6-p等都需要pi作为底物,而进一步反应脱下来的pi需要及时运出胚乳转化为植酸储存。而突变体籽粒中累积的pi严重抑制了淀粉合成相关酶的酶活和表达,特别是淀粉合成过程重要的限速酶AGpase,该酶催化淀粉合成的第一步, 其功能降低导致籽粒灌浆缺陷。过表达AGpase亚基能够部分恢复Ospho1;2突变体籽粒灌浆缺陷表型。因此,OspHO1;2通过调节胚乳内pi含量来促进AGpase等淀粉合成相关酶的活性,从而维持籽粒灌浆。

研究还发现玉米同源基因ZmpHO1;2也能够调控玉米籽粒灌浆和磷的再分配过程,表明pHO1家族蛋白介导的籽粒灌浆调控过程在谷类作物中高度保守。更重要的是,研究发现在水稻中过表达OspHO1;2基因能够适度降低籽粒中的无机磷和总磷含量,促进AGpase酶活增加并增加单株产量,特别是在低磷条件下,过表达株系始终维持高产性状,证明该策略可以提高磷利用率。该研究首次将磷转运、籽粒灌浆和磷利用效率三者紧密结合在一起,对生产中面临的籽粒充实度和品质改良有重要育种指导意义,也为提高磷肥利用效率提供了有效的育种靶标。

该项研究工作以上海科技大学为第一完成单位,通讯作者为上海科技大学兼职教授、植物分子遗传国家重点实验室何祖华研究员,加州大学伯克利分校栾升教授和植物分子遗传国家重点实验室唐威华研究员为共同通讯作者。文章第一作者为何祖华研究组博士研究生马斌,扬州大学张林教授,加州大学伯克利分校高起飞博士后和浙江省农科院作核所王俊敏研究员为共同第一作者。该研究工作得到了国家重点研发计划、中科院先导项目、植物分子遗传国家重点实验室等项目的资助。

文章链接:https://dx.doi.org/10.1038/s41588-021-00855-6

news figure.jpg

OspHO1;2调控籽粒灌浆和磷的再分配